Introduction to the Social Web
Content Search, Recommendation and Exploration

Sihem Amer-Yahia
Behrooz Omidvar-Tehrani
CNRS/LIG
Nov 19th, 2014
Course Outline

• Nov 19th, 2014
 – Brief history of Recommendations: 1 hour
 – Blending Search and Recommendation: 2 hours
 • Hotlists Recommendation on Delicious
 • Top-k Algorithms
 • Network-aware Search on Collaborative Tagging Sites

• Nov 26th, 2014
 – User Studies on the Social Web: 1 hour
 • Group Recommendation
 – Social Content Exploration: 2 hours
Top-k Algorithms with Applications to Collaborative Tagging Sites

• Top-k processing
 – What it is and why we need it
 – Fagin algorithm (FA)
 – Threshold algorithm (TA)
 – No random access algorithm (NRA)
What is *top-k* processing?

- **Find k items that best answer a user’s query**
 - As a set, as a sorted list, as a sorted list with scores
 - Usually from among N items, where $N >> k$

- **Application domains**
 - Web search & other document retrieval / ranking tasks
 - Find documents about “Massachusetts election health care”
 - Search over multimedia repositories
 - Find red images that show a palm tree and a sunset
 - Search over structured datasets with user-defined preferences
 - Find large apartments in a good school district in Brooklyn
 - Many others….

- **Compared to SQL querying**
 - Relevance *to a degree*, not Boolean
 - Return only the best items, not all items
 - Quality of an item is expressed by a score
Why do we care about top-k processing?

- Many practical applications

- Representative of many data management problems
 - Solid application scenarios, and new emerging every day
 - We’ll talk about how top-k is used for social search
 - Variety of algorithmic approaches
 - Explores the *trade-off between run-time performance and space overhead*
Ranking functions

• Ranking (scoring) functions are used to compute the score of an item.
• Item $R(x_1, ..., x_m)$, where x_i are the *ranking attributes*, e.g. degree of redness in an image, square footage of a house, number of times “Massachusetts” occurs in the text, etc.
• $\text{score}(R) = g\left(f_1(x_1), ..., f_m(x_m)\right)$
 - where f_i are *monotone functions*, e.g. $f(x) = 2 \times x$
 - g is a *monotone aggregation function*, e.g. sum, average, max
 - e.g. $\text{score}(i) = 2 \times \text{sq. ft.} + 3 \times \text{quality of school district}$

Definition

A function f is monotone if

$f(x) \leq f(y)$ whenever $x \leq y$

An aggregation function g is monotone if

$g(R) \leq g(R')$ whenever $R. x_i \leq R'. x_i$, for all i
Top-K Algorithm Performance

• **Execution time**
 – Sequential access (SA)
 • accessing items in order, e.g. by reading from a cursor
 • similar concept to a sequential disk read, where seek time is amortized over multiple accesses
 – Random access (RA)
 • accessing items out of order, e.g. a primary key lookup
 • similar to a random disk read
 • typically more expensive than an SA (even orders of magnitude), sometimes impossible
 – Why not use wall clock time?

• **Buffer size**
 – How much state do we have to keep during computation
 – Is the size bounded by some constant (e.g. k), or is it linear in the size of the dataset (N)? (recall that $k << N$)
Naïve Computation of top-k Answers

• Algorithm
 – Compute the score of each item
 – Sort items in decreasing order of score
 – Return k items with the highest score

• Example 1 (on the board & next slide):
 $R \ (\text{id}, \text{annual income, net worth})$
 $\text{score}(r) = r.\text{income} + r.\text{net worth}$

• Properties of naïve solution
 – Advantage - simple
 – Disadvantage - unacceptable run-time performance when N is high

• Idea: throw space at the problem
 – pre-compute inverted lists for components of the score
 – aggregate partial scores at run-time
Example 1

| id | income (K$) | net worth (K$) | score
= income + net worth |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r₁</td>
<td>150</td>
<td>350</td>
<td>500</td>
</tr>
<tr>
<td>r₂</td>
<td>150</td>
<td>425</td>
<td>575</td>
</tr>
<tr>
<td>r₃</td>
<td>125</td>
<td>450</td>
<td>575</td>
</tr>
<tr>
<td>r₄</td>
<td>100</td>
<td>450</td>
<td>550</td>
</tr>
<tr>
<td>r₅</td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>r₆</td>
<td>80</td>
<td>100</td>
<td>180</td>
</tr>
<tr>
<td>r₇</td>
<td>75</td>
<td>500</td>
<td>575</td>
</tr>
<tr>
<td>r₈</td>
<td>75</td>
<td>50</td>
<td>125</td>
</tr>
<tr>
<td>r₉</td>
<td>50</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>r₁₀</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>
The Basic Indexing Structure (sorted): Inverted List

<table>
<thead>
<tr>
<th>id</th>
<th>income</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>150</td>
</tr>
<tr>
<td>r_2</td>
<td>150</td>
</tr>
<tr>
<td>r_3</td>
<td>125</td>
</tr>
<tr>
<td>r_4</td>
<td>100</td>
</tr>
<tr>
<td>r_5</td>
<td>100</td>
</tr>
<tr>
<td>r_6</td>
<td>80</td>
</tr>
<tr>
<td>r_7</td>
<td>75</td>
</tr>
<tr>
<td>r_8</td>
<td>75</td>
</tr>
<tr>
<td>r_9</td>
<td>50</td>
</tr>
<tr>
<td>r_{10}</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>net worth</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_7</td>
<td>500</td>
</tr>
<tr>
<td>r_3</td>
<td>450</td>
</tr>
<tr>
<td>r_4</td>
<td>450</td>
</tr>
<tr>
<td>r_2</td>
<td>425</td>
</tr>
<tr>
<td>r_1</td>
<td>350</td>
</tr>
<tr>
<td>r_9</td>
<td>300</td>
</tr>
<tr>
<td>r_5</td>
<td>200</td>
</tr>
<tr>
<td>r_6</td>
<td>100</td>
</tr>
<tr>
<td>r_8</td>
<td>50</td>
</tr>
<tr>
<td>r_{10}</td>
<td>50</td>
</tr>
</tbody>
</table>
Fagin Algorithm (FA)

- **Algorithm**
 - Access all lists sequentially (SA), in parallel
 - STOP once k items have been seen in all lists
 - Compute scores of incomplete items by performing a random access (RA)
 - Sort on score, return the best k items

- **Work out Example 1 on the board for $k = 3$**

- **Performances**
 - Number of accesses: 7 SA + 3 RA
 - Size of buffer: 5 objects in buffer

- **Is this algorithm correct?**
Threshold Algorithm (TA)

• **Algorithm**
 – Access all lists sequentially (SA), in parallel
 – After each cursor move
 • Compute the score of the item r under the cursor with random accesses (RA)
 • Record r in the buffer if
 – (i) buffer size < k
 – (ii) r ‘s score > k^{th} score, remove k^{th} item from buffer
 • Update the *threshold* $\theta = \sum$ current list scores
 • STOP when k^{th} score $\geq \theta$
 – Return the k items currently in the buffer

• **Work out Example 1 on the board for $k = 3$**

• **Performance**
 – 4 SA + 4 RA; #RA = #SA * (m-1), where m is the number of lists
Comparison between FA and TA

• Theorem: \# SA in TA \leq \# SA in FA

• Theorem: TA requires only bounded buffers, FA buffers are unbounded
What if we couldn’t do random accesses?

- Sometimes it suffices to output the top-k as a set
- Sometimes we can get away with outputting top-k in sorted order, but with no scores
No Random Access Algorithm (NRA)

Algorithm
- Access all lists sequentially (SA), in parallel
- After each cursor move compute
 - Worst-case score $W(r)$, best-case score $B(r)$ for each seen r
 - Sort all seen items on $W(r)$, breaking ties by $B(r)$
 - $\theta = \sum$ current list scores (this is the best-case score of any unseen object)
 - STOP when $W(r)$ of k^{th} object $\geq \theta$
- If random accesses are possible, compute complete scores of the top-K items
- Return the top-k items

Work out Example 1 on the board for $k = 3$

Performance
- 13 SA + 0 RA
- Optimal performance if no RAs are allowed
- In reality, computation may be slow -- re-sorting potentially large buffers at each step