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Abstract
In this paper, we introduce and explore ways to include a notion of partiality of
information in knowledge representation formalisms. This leads to the definition
of an algebraic structure based on observation and partial representation, and to
the study of the logical behaviour of those structures, with the characterization of
a new modal logic calle®L.

1 Introduction

In the process of the formalization of some system, any information available about
its constitution or its state comes from observations which can be performed on the
system. Thus, this notion of observation, and that of knowledge acquisition has to be
taken into account, be considered when defining a model.

This idea is not new, and has already been studied [1, 9], focusing on the fact
that it is only possible to have some finite information about the state of the system.
This approach leads to the fact that only semi-decidable properties can be used for
expressing informations about the system.

In the present article, we will study another approach. Instead of focusing on the
finiteness of observations, we will rather take the fact that they have to be partial and
imperfect as their most important property. Thus, we will use the notion of partial
description as a formalization of the state of the system. Those descriptions can be
embedded in a partially ordered setearesentationwhere the informational content
is used to define the ordering. We will also considerer the existence of severals points
of observation of the system (and several representations). As all those representations
are related to the same system, it is possible to exhibit some correlations between the
descriptions appearing in different representations. Thus, in this context, we will re-
place the study of the behaviour of the system by the study of the relationships that
exist between the different representations, and will forget the existence of the system,
leading to the definition of a modal logic which formalizes the way partial information
behaves.

In the following, we will introduce two algebraic structuresepresentationgnd
representations systemich contain several representations and some ways to relate



them. Then, we will define a logic on those structures, and characterize its behaviour,
leading to the definition of the observational logd.. Finally, we will discuss some
properties of this logic and show that there exists very weak relations between the
knowledge accessible from different points of view.

2 Knowledge Representation Formalism

Let us first discuss what approach we want to take in order to formalize data. Any piece
of information about the studied system can be seen as a partial description of its state.
In the following, we will call such a piece of informationdescription so that we only

want to take into account the elements of information which are related to the state of
the system, and forget anything about the physical implementation of the description.
Another important notion which comes with descriptions, is that of comparison. As
the descriptions we consider are partial, it follows that it is possible to compare them,
by telling whether a description is more precise than another. This comparison relation
acts as a partial order on descriptions, and we will include it in our framework, so that
we get the following definition :

Definition 1
A representation is a pair R = (R, <) where R is a set of descriptions and < is a
partial order on the descriptions.

Conventionally, if two descriptions are comparable then the smallest element cor-
responds to a more accurate description than the othed; # d, d; is the most
accurate, and, can be seen as an approximationlof

With this definition, it appears that a representation is nothing more tipaset
Actually, many refinements of the definition could be considered, such as the existence
of extremal elements or of internal operations such as the meet and the join. But since
they shall play no role in the logical study we want to make, we will keep the previ-
ous definition unchanged, and use the terminologyepfesentatiorand description
instead of poset and element only in order to keep in mind the fact that they are related
to an observation and a formal representation of a system. For notation convenience,
we will always identify a representation with its set of descriptions.

2.1 Representation System
2.1.1 Acollection of representations

A representation, as we have just defined it, is a set of elements which correspond
to the descriptions that can possibly be made from a given point of view. But in the
presence of partial observations, one should more generally consider that there exist
several points of view. For instance, different observations may correspond to different
resolutions. If an observation yields information on a determined part of the system,
one can imagine a point of view observing another part of it. Many other possibilities
may exist. The main reason for this lies in the word “partial” itself : knowing that a
point of view is partial implies that there exists some information that is not available



or accessible from this point of view, so that there might exist other points of view
which permit to have access to those informations.

As a representation is associated to a point of view, one should in general consider
the existence of several representations. In the following, bet a set of indexes corre-
sponding to the existing points of view, and for eachZ, let R; be the representation
associated to the observation process indexed by

2.1.2 A set of transformation functions

Since all the representations are supposed to be a formalization of a unique system,
there should in general exist relations between the different representations. We will
define a collection of functions between the representations to express this relationship.
Here is the idea : suppose one has a descriptjah R; corresponding to the point of
view i. This description correspond to some information about the state of the system.
This implies pieces of information which can be accessible from another point of view
R; (possibly including no information at all). Let; be the best description 6¢;
corresponding to this and defirfg; (d;) = d;.

This way, it is possible to define a collection of description transformation func-
tions f;; : R; — R;. If the previous considerations are rather informal, they allow
us to give a characterization of those functions. First of all, the function which has the
same representation as range and domain has to be the identity function on this repre-
sentation, since the best description of a given state remains itgelf f;);(d) = d.
Moreover, thef;|;'s have to be monotonous : if one has two descriptior< ds in R;
(this inequality means thal represents more information that), then any piece of
information present irf; ;(dz) has to be present if;;(d; ).

Finally, from the definition of thef; ;’s, one may conclude that a descriptidre
R; corresponds to more information that;(d), even though they do not belong to
the same representation. It is possible to express this fact using a third representation,
and translate those two descriptions into this third representation. This leads to the
following : leti, j, k be three indexes, and lét be a description oR. If f;;(dx) has
fewer information thatly, then it implies thayf; ; o f; . (dx) also has fewer information
than f; ;. (dx). This can be seen as a generalization of the monotony condition. This
can be expressed by the following inequality :

Vi, j,k € Z,Vd € Ry, fijr(d) < fij; o fx(d) 1)

We think that those conditions provide a good characterization of what a set of trans-
formation functions should verify. They actually express very strong constraints on the
different observations. First, they imply that they are all related to the same system.
But more important, the last condition also means that they all correspond to observa-
tions of the system in a single state, since it also provides a way to relate the results of
the different observations.

We can now combine those two elements together, in order to define the main
algebraic structure which will be used to formalize and study observed systems.



Definition 2
A representation systeima tuple :

S = <17 {Riticr {filj}i,jel>

where 7 is a set of indexes, for each i € T, R; is a representation, and for any ¢,j € Z,
fi‘ ;j is a monotonous function from R ; to R;. Moreover, those functions verify :

Vi€, fi; = id;
Vi, j,k €L, fir < fajj o [k

Using this structure, we will now provide some ways to explore and characterize
the logical behaviors which comes from the observational approach we are using.

3 Logical Characterization

In order to express facts about the system which is studied, we are now going to define
a propositional language which sentences will be interpreted as assertions about the
state of the system. LeF denote a countable set of atomic propositions about the
system. We defin€y as the smallest language includidg the false element. (we
assume that. ¢ ¥), and closed fok, A, —. We define~y as a short-cut fop — L,
but as we will soon show, the logics we will exhibit are based on intuitionnistic logic,
so that we cannot defineas a combination of and—.

We also need to defingz v, which also contains a set of modal opera@@i}ig.
Those operators will be used to express facts such that a given assertion can be proved
using observations made from point of viéwThis use of modal operators is similar
to that in the field of epistemic logic [5].

3.1 Single Representations

In this section, we will first focus of the use of a single representation as the interpre-
tation of logical assertions. Since we are considering only one point of view, we shall
restrict ourselves td g, that is we do not consider the modal operators. Rdbe a
representation. Our first objective is to define an interpretation fun§fjomhich as-
sociates a sentengee Ly to a set of descriptions. More precisely, we defjp¢ as

the set of descriptions which provide enough information about the state of the system
for proving thaty holds.

First, suppose that one has two descriptidns< d», and thatds € [¢]. From
the definition,d; provides more information thady. But if ds suffices to prove thap
holds, then so doe$;,. This implies that for any € Ly, its interpretatior] is an
ideal of R, that is a downward-closed subset (verifyiid;, < do, ds € [¢] = d; €
[¢])- If ot (P) denotes the set of ideals of a poggtthen[-] is a function fromLy to
o' (R). We will now define this function inductively considering the structure of the
terms. For atomic propositions, one has to provide their interpretations, so that we need



Vi €U, [P]r. = v(D)
[eVYlrey = [elry U¥r,w
[[sMw]]mf[[sO]]mﬂ[W]]m
lo = Ylr, ={d|Vd <d,d €[¢]lr, = d € [¢Y]r.}
[elry ={d | Vd <d,d &[¢]r}
[[J-]]RV—

Figure 1: Definition of[-] ., : Lo — p'(R)
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Figure 2: Axioms and rules of intuitionnistic logic

an atomic interpretation function: ¥ — ! (R). The interpretation of the conjunc-

tion and the disjunction are straightforward, taken from their set-theoretic equivalent.
For instancefy Vv ¢] = [¢] U [#]. It is not possible to do so for the implication :

it would be tempting to definfp — ¢] as the se{d | d € [¢] = d € [¢]}, butitis
generally not an ideal. Instead, one has to restrict to the greatest ideal included in that
set. We summarize this definition in figure 1.

With this function, we can define a validation symbol as follows : given a represen-
tation R, an atomic interpretation functian: ¥ — ©!(R), and a descriptiod € R,
we say that a propositiop € Ly is valid for d and writeR,v,d =g ¢ if and only
if d € [¢]r,.. We also definR,v =g ¢ for [¢]r,, = R andl=g ¢ if and only if
R, v =g ¢ for all representation® and atomic interpretations: ¥ — p!(R).

In the next proposition, we will show that this validation symbe}; is exactly
equivalent to intuitionnistic logic. This logic, which formulation is given in figure 2,
was defined as an alternative to classical logic, where the excluded middle principle
is rejected, and where implication embodies a cause to consequence relation much
stronger that its equivalent in classical logic. Let us witg ¢ to denote thafp can
be proved using the axioms of intuitionnistic logic.



Proposition 1
Given a sentence ¢ € Ly, one has the equivalence :

FiILy < Fre

Proof This comes from the fact that representation, which are just posets, can be seen
as Kripke structures, where the accessibility relation is reflexive and transitive. Such
structures are the usual models for intuitionnistic logic [6, 4]. O

Now that we have precisely characterized the logic associated to representations,
we will turn to representation systems. This time, there will be several points of view
to consider, so that it is the full language « which will be used now.

3.2 General Representation Systems
3.2.1 Extension of the interpretation function

We will now consider a representation systém= (Z,{R;},{f;}). We have de-

fined an interpretation functioh] associated to a given representation. Since a repre-
sentation system is made of several representation, one will have to consider as many
interpretation function§]; : £7¢ — p'(R;). Moreover, as an interpretation function

is based on an atomic interpretation function (previously dengtede will also need

to consider a collection of atomic interpretatians: ¥ — ! (R;) in order to define
the[-];.

We also need to define the interpretation of the mddaloperators. For doing
this, considetl € [K; ¢]; (in particular,d € R;). From the interpretation ok, this
means thatl corresponds to a description which contains enough information to assert
that the propertyy in the representatioR;. Since the descriptiod belongs taR;, it
follows that if it is transformed into a®; description usingf; ;, it is included in the
interpretation ofp for i. Stated formally, one has :

de[Kiol; & fi(d) € [¢]s

This leads to the definition of[-]s ..}, given in figure 3, wheres is a rep-
resentation system, anddenotes the collectiofiv; : ¥ — p!(R;)}. We define the
notationk=s ¢ which means that for any representation systerand for any atomic
interpretation functions = {v;},_,, one has :

VieZ, [¢lsy:=TRi

Before starting the characterization of the logic which corresponésstowe first
give two useful propositions. The first one, which concerns intuitionnistic logic, gives
a simpler version of the validation of an implication.

Proposition 2
Given two terms  and 1), one has :

':5' Y — '(/) Aad VS,V,i, [[(p]]s,u,i g [[’(/J]]S,V,i



Vi eV, [Y]sp: = vi(V)
loVilswi=I[¢lsv:UYlsvi
le Ablsw,i = [els,vi N [W]sw,i
lo = Plspi={d|Vd <d,d € [e]sp:=d €[Y]sui}
[Llsi=0
[K; olswi={d]| f;:(d) € [¢]s,;}

Figure 3: Definition of{ []s,.; : Lo — pl(Ri)}ig

Proof It comes from the following simple calculation :
':S Y — ¢ g VS,V,i, [[SO - w]]s,ufi - Ri
= VS,V,i, Vde RZ‘, de [[(P]]S’V’i =de [[w]]g,y’i
= VS,V,Z', HQD]]S,UJ g Hw]]s,u,i

O
The second one relates, for a given indethe modal operatak’; and the interpre-
tation[-];.

Proposition 3
Given an index ¢ € 7 and a term , one has :

K ¢]i = [l
Proof It comes from the fact thaf;; is the identity oriR;, so that :

[Kieli={d| fi(d) €[]} ={d | d € [¢li} = [#]s

3.2.2 Identification of the corresponding logic

Since the definition of the interpretatidrs is an adaptation of the previous interpre-
tation defined on single representations, it follows that the logic modelized by repre-
sentations systems will be based on intuitionnistic logic.

Some axioms have to be added to it in order to give a formalization of the behaviour
of the modal operators, so that we will now study the validation of modal axioms. First,
we will consider some classic axioms taken from the literature [3, 8] : we will explore
the validation ofK, D, T, 4 and5.



The first axiomK : K; (p — ¢) — K, » — K; can be interpreted in the
present situation as the fact that an agdptssociated to a given point of view (and
a representatiof®;) can make deduction. In other words, Af has enough informa-
tion for proving that bothp — 1 and hold for the observed system, thenalso
holds. This can be proved, using proposition 2, by showing [fhat(y — )], C
[K; ¢ — K;v];. Thisis true, since :

[Ki(e— )l ={d|Vd < f;;(d),d €[e]i = d € [¥]:}
[Ki¢e — Kiv]; ={d|Vd <d, fi;(d) € [¢li = fii;(d) € [¥];}

and using the monotony ¢f;, one hasl’ < d = f;;(d') < f;;(d).

The axiomD : K; ¢ — —K; —p is also valid for representation systems. Used in
conjunction withK, it is equivalent toK; 1. — L. It is easy to show that this latter is
valid for representation systems, since :

[Ki L]y ={d]| fi;(d) € [L];} = {d| fu;(d) € 0} =0 =[L];

Using the previous agent interpretation, this means that the knowledge of a given agent
is consistent, since it cannot prove the absurd proposition. Yet, as we will now show,
this does not imply that the knowledge of an agent corresponds to properties that are
actually verified by the observed system. This is reflected by the fact that the axiom
T : K; ¢ — wis notvalid. It is possible to show this by considering a representation
system with at least two indicésindj, and a set of atomic interpretation functiom },

such that;(v)) = R, andv;(y)) = () (wherey is an atomic proposition). T were
verified, it would imply thaf K ¢]; C [¢];. Butin the present cas@l(; ¢']; = R;
and[y]; = 0.

Actually, a weaker version df is valid for representation systems. This version
reduces the scope @f to proposition of the forni; . More precisely, we define the
axiomT; : K; K; ¢ — K . Its validity is the exact expression that the transforma-
tion functions verifyf;, < fi|; o fjx, Since :

[K: Kj o]k € [K ¢]k
& fjio fir(d) € [@l; = fiix(d) € [#];
& fie(d) < fjji o fip(d)

Thus, in this formalism, the knowledge an agent has about the studied system might
not correspond to reality, but it is consistent, and what she knows about the knowledge
of another agent is exact.

We will now turn to the introspection axioms. First, let's consider K; ¢ —
K; K; p. This axioms expresses the fact that an agent knows that she knows some
particular proposition. It is valid for representation systems, sfij¢és the identity on
R;. The other introspection axio : —=K; ¢ — K; =K, ¢, which applies to things
which are not known (or more precisely that cannot be known), is not valid. This
can be understood from the postulate that knowledge comes from observation, since
knowledge would in the case &falso come from an absence of observation.



Using proposition 3, it is possible to define an extra axiom which expresses more
precisely how introspection occurs in the present framework. As shown above, one
has :

[ ol = [l

It follows from this that if we definedl : K; (¢ « K, ¢), this axiom is valid for
representation systems. Since the equivalencés only a notation and not a real
connector, this axiom can be split into two parts :

With those notations, it is easy to see that VIRhL4 implies4. Thus, we have given a
characterization of an agent’'s knowledge about herself which is better than just stating
that4 is verified.

To finish this survey of axioms valid for representation systems, we will also intro-
duceKYV : K; (p V¢) — K;p V K; 1. This axiom can be seen as an adaption to
agents of the way the disjunction operation behaves in intuitionnistic logic. Thus, if an
agents knows thap Vv ¢ is true, then she knows that eithgior ¢ is true.

Finally, let's take a look at the rules which can be used. FirstNke (necessity)
rule, which allows to infet- K; ¢ from b ¢ is valid, since[y]; = R; implies that
[K; ¢]; = R;. Another rule can be defined, which expresses the wayis defined.
If a propositiony is valid for representation systems, then it means that given a rep-
resentation systerff, one hasvi, [¢]; = R,. But this is equivalent to stating that
Vi,7, [K; ¢]; = R;. This leads to the definition of a new rule which we ddthiv

(universality) :
VieIl FK;p
——— Univ
e

With all those definitions, we will now introduce the observational Id@k. This
logic is an intuitionnistic modal logic which modal axioms &e D, L, T, andKV
and which modal rules adec andUniv. A summary is given in figure 4. This logic
is exact the logic modeled by representations systems :

Proposition 4
Given a sentence ¢ € L7 g, one has the equivalence :

FoLy & s
Proof The complete proof can be found in the appendix. O

It is interesting to remark that the logic we have just identified has strong relation-
ships withIS4 + KV. This logic has been identified in the case of representation
systems where there exists a representation which is more expressive than the others,
and where all knowledge is related to this representation [2].O&tjs neither weaker
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Viel FK;p
- 7 Univ
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Figure 4: Modal axioms and rules 6fLL

nor stronger thafiS4+KV. Rather, this logic is a variant of the latter, and the fact that
it does not verifyT leads to some interesting properties about the way the knowledge
of different agents can be related.

4 Discussion

Using this framework and the logic we have devised, it is possible to initiate a dis-
cussion about the possible relationships that exist between the knowledge of different
agents. In the definition dDL, only one axiom does relate the existence of different
modal operators. This axiom is the one we callgg:

T2KZKJ()O—>KJ§0

It expresses the fact that if an agetit knows that another agent; knows a property

©, then agent4; actually knowsy. Yet, this axiom is weaker thall, and does not
permit to deduce any property abodt knowing . This can be expressed by the fact
that agents do not trust each other. If it were the case, it would mean that representation
systems do verify an axiom which we c@ll:

CZKZ'KJ‘()OHKZ‘()D

This axiom is very similar tdl's, except that it removes the rightmost modal operator
instead of the leftmost. Stated another way, vidth, one has to keep the rightmost
modal operator, an@ would allow to remove it. It is easy to show that this axiom is
not valid for representation systems, since it would imply the validitI"ofs shows
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the following derivation :
Vi, g, k, [Ki Kj @]x C [K; @]k
= Vi, jk, {d| fir(d) € [K; i} € {d ] fir(d) € [¢]i}
= Vi, j, {d| fii(d) € [K;]i} € {d| fi:(d) € [¢]:}
= Vi, j, [K; ¢l C [¢]s

Thus, we have shown that agents cannot trust each other. A weaker way to relate the
agents’ knowledge can be expressed by a condition of global consistency, which we
formalize by axiomGD :

GD: K;p— Ko

It can be shown that this axiom is not valid either, and it is even possible to build a
representation system which modelizésy A K; —p. This implies that it is not even
possible to ensure that for a defined state of the system, a property and its negation
cannot be observed.

As we have seen, even though we have identified the observationaOdgfiom a
very general algebraic structure used to formalize the notion of partial observation, this
logic expresses very weak conditions on the relations between the knowledge of the
different observers. More precisely, it appears that the only way to relate two different
agents is the use of axioi; which, as mentioned earlier, forces to keep the rightmost
modal operator. Thus, it is impossible to disconnect an observation from its originating
point of view.

Yet, this does not imply thaDL is useless, or that it cannot express any relation
between agents. On the contrary, its behaviour shows that an important point which
has to be taken into account is that as soon as the originating point of view is consid-
ering, thus leading to consider propositions of the fdkine, then the information is
trustworthy, and the axiom@ andGD are verified. For instance, one has :

FoL Ki Kj Ky — K; Ky

Thus, propositions of this form can be used safely to describe the state of the sys-
tem, since it does not depend on a specific representation. This suggests the existence
of a category of propositions which behave the same way, and can be used safely.

5 Conclusion

In this article, we have introduced a simple algebraic structure in order to formalize
knowledge and information based on partial and incomplete observation. This led us
to the definition ofrepresentation structuresising very general assumptions on the
structure of studied systems. Using those structures, we have defined a specific logic,
namelyOL, intended to formalize the behaviour of information in such a context.

The study of this logic has permitted to identify some very interesting and maybe
counter-intuitive properties of information. The first point is that it is based on intu-
itionnistic logic, rather than on classical logic. Thus, the excluded middle principle

11



is not verified. Similarly, the modal axiom : - K; ¢ — K; —K; ¢ is not verified
either. This suggests that knowledge comes solely from observations, and is obtained
inductively.

Another important aspect is that there exists a category of propositions which can
be used without any reference to a particular representation, or point of view. We have
seen that propositions of the foriy; ¢ are in this category, since a particular represen-
tation is explicitly given. Yet, there might exist other propositions in this category, and
this notion is still to be studied.
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A Proof of completeness

We will prove the completeness by defining a canonical mod€@bf For this, let us
define for each index € T the representatio®;. Let this representation be the set
of all prime setd’; of OL such that they contaip «— K; ¢ for all propositionsyp,
ordered by reverse inclusion. We recall that given a lagjia setl" is prime for this
logic if and only if it is closed by deduction fdg, it is consistent (so that ¢ I'), and
if oV € T, then eitherp or ¢ belongs td". This is a simple adaption of the canonical
model used for intuitionnistic logic as it can be found in [4] for instance.

We also definef;;(I';) = {¢ | Kip €T} andv;(v) = {T; | ¥ € Ty}, With
those definitions, it is easy to check ti&t = (Z,{R;},{f,;}) is a representation

12



system. The canonical interpretatifpfjc is defined ag-]s. ... This interpretation
verifies :

Proposition 5
For any proposition o, one has :

Vi, [l = {Ti | ¢ € I}

Proof This result is proved by induction on the length of the considered term. We
will only develop the modal case :

[Ki¢lo; = {T5 | £1;(T;) € leloi}
{T [ e fi;(TN}
= {F] ‘ KlQOEFJ}

O

Proposition 6

One has :

lelei =Ri = For Kiw
Proof If [¢]c.; = Ri, then there exists a finite sy, ..., 1, } such that :
FoL (Y1 < Ki1) Ao A (P < Kihyn) — ¢
Using ruleNec, this implies :
ForL Ki (Y1 < Kith1) Ao o A Ky (¥ > Kithy) — K@
So that one can deduégy;, K; ¢ thanks to axiond.. O

Proposition 7
For all p € L7 g, one has :

FoL v & FEs ¢

Proof The soundness direction can easily be checked by hand, and has been sketched
in 3.2.2. The completeness direction

Ese= Vi [¢]lei =Ri= Vi, FoL Ki¢ = FoL ¢

The last implication comes from the application of the universality rule. O
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